
CS 61B Sorting II
Fall 2025 Exam-Level Discussion 12: November 17, 2025

1 Conceptual Sorts
Answer the following questions regarding various sorting algorithms that we’ve discussed in class. If the question
is T/F and the statement is true, provide an explanation. If the statement is false, provide a counterexample.

0.1 (T/F) Quicksort has a worst case runtime of Θ(𝑁 log𝑁), where 𝑁 is the number of elements in the list
that we’re sorting.

0.2 We have a system running insertion sort and we find that it’s completing faster than expected. What
could we conclude about the input to the sorting algorithm?

0.3 Give a 5 integer array that elicits the worst case runtime for insertion sort.

0.4 (T/F) Heapsort is stable.

0.5 Compare mergesort and quicksort in terms of (1) runtime, (2) stability, and (3) memory efficiency for
sorting linked lists.

0.6 Describe how you might use a particular sorting algorithm to find the median of a list of N elements in
worst case Θ(𝑁 log𝑁), without fully sorting the list.

2 Sorting II

0.7 You will be given an answer bank, each item of which may be used multiple times. You may not need to
use every answer, and each statement may have more than one answer.

(A) Quicksort (in-place using Hoare partitioning and choose the leftmost item as the pivot)
(B) Merge Sort
(C) Selection Sort
(D) Insertion Sort
(E) Heapsort
(F) None of the above

For each of the statements below, list all letters that apply. Each option may be used multiple times or
not at all. Note that all answers refer to the entire sorting process, not a single step of the sorting process,
and assume that 𝑁 indicates the number of elements being sorted.

 bounded by Ω(𝑁 log𝑁) lower bound.

 Worst case runtime that is asymptotically better than quicksort’s worst case
runtime.

 In the worst case, performs Θ(𝑁) pairwise swaps of elements.

 Never compares the same two elements twice.

 Runs in best case Θ(log𝑁) time for certain inputs.

Sorting II 3

2 Sorted Runtimes
We want to sort an array of 𝑁 unique numbers in ascending order. Determine the best case and worst case
runtimes of the following sorts:

(a) Once the runs in merge sort are of size <= 𝑁
100 , we perform insertion sort on them.

Best Case: Θ(     ), Worst Case: Θ(     )

(b) We use a linear time median finding algorithm to select the pivot in quicksort.

Best Case: Θ(     ), Worst Case: Θ(     )

(c) We implement heapsort with a min-heap instead of a max-heap. You may modify heapsort but must
maintain constant space complexity.

Best Case: Θ(     ), Worst Case: Θ(     )

(d) We use any algorithm to sort the array knowing that:

• There are at most 𝑁 inversions.

Best Case: Θ(     ), Worst Case: Θ(     )

• There is exactly 1 inversion.

Best Case: Θ(     ), Worst Case: Θ(     )

• There are exactly 𝑁(𝑁−1)
2 inversions.

Best Case: Θ(     ), Worst Case: Θ(     )

4 Sorting II

3 Bears and Beds
In this problem, we will see how we can sort “pairs” of things without sorting out each individual entry. The hot
new Cal startup AirBearsnBeds has hired you to create an algorithm to help them place their bear customers
in the best possible beds to improve their experience. Now, a little known fact about bears is that they are
very, very picky about their bed sizes: they do not like their beds too big or too little - they like them just
right. Bears are also sensitive creatures who don’t like being compared to other bears, but they are perfectly
fine with trying out beds.

The Problem:

• Inputs:
‣ A list of Bears with unique but unknown sizes
‣ A list of Beds with unique but unknown sizes
‣ Note: these two lists are not necessarily in the same order

• Output: a list of Bears and a list of Beds such that the ith Bear is the same size as the ith Bed

• Constraints:
‣ Bears can only be compared to Beds and we can get feedback on if the Bear is too large, too small, or

just right for it.
‣ Your algorithm should run in 𝑂(𝑁 log𝑁) time on average

	Conceptual Sorts
	Sorted Runtimes
	Bears and Beds

