
CS 61B Tries and Sorting
Fall 2025 Exam-Level Discussion 11: November 10, 2025

1 A Wordsearch
Given an N by N wordsearch and N words, devise an algorithm (using pseudocode or describe it in plain
English) to solve the wordsearch in O(𝑁3). For simplicity, assume no word is contained within another, i.e., if
the word “bear” is given, “be” wouldn’t also be given.

If you are unfamiliar with wordsearches or want to gain some wordsearch solving intuition, see below for an
example wordsearch.

Example Wordsearch:

Hint: Add the words to a Trie, and you may find the longestPrefixOf operation helpful. Recall that
longestPrefixOf accepts a String key and returns the longest prefix of key that exists in the Trie, or null
if no prefix exists.

2 Tries and Sorting

Solution:
Algorithm: Begin by adding all the words we are querying for into a Trie. Next, we will iterate through
each letter in the wordsearch and see if any words start with that letter. For a word to start with a given
letter, note that it can go in one of eight directions — N, NE, E, SE, S, SW, W, NW.

Looking at each direction, we will check if the string going in that direction has a prefix that exists in
our Trie, which we can do using longestPrefixOf. Note that words are not nested inside of others, so at
most one word can start from a given letter in a given direction. As such, if longestPrefixOf returns a
word, we know it is the only word that goes in that direction from that letter.

For instance, if we are at the letter “S” in the middle of the top row of the wordsearch above and are
considering the direction west, we would want to see if the string "SOHUMC" has a prefix that exists in the
given wordsearch. To efficiently perform this query, we call longestPrefixOf("SOHUMC"), which, in this
case, returns "SOHUM", and we proceed by removing "SOHUM" from our Trie to signal that we found the
word "SOHUM".

We will repeat this process until all the words have been found, i.e. when the Trie is empty. Finally, note
that this is a very open-ended problem, so this is one of many possible solutions.

Runtime: We look at 𝑁2 letters. At each letter, we execute eight calls to longestPrefixOf which runs in
time linear to the length of the inputted string, which can be of at most length N, since that is the height
and width of the wordsearch. Thus, if we perform on the order of N work per letter and we look at 𝑁2

letters, the runtime is 𝑂(𝑁3).

Tries and Sorting 3

2 Longest Prefix
Fill in the longestPrefixOf(String word) method below such that it returns the longest prefix of word that
is also a prefix of a key in the trie.

For example, if a TrieSet t contains keys {"cryst", "tries", "cr"}, then t.longestPrefixOf("crystal")
returns "cryst" and t.longestPrefixOf("crys") returns "crys".

The code uses the StringBuilder class to build strings character-by-character. To add a character to the end
of the StringBuilder, use the append(char c) method. Once all characters have been appended, the resulting
String is returned by the toString() method.
 StringBuilder sb = new StringBuilder();
 sb.append('a');
 sb.append('b');
 System.out.println(sb.toString()); // "ab"

public class TrieSet {
 private Node root;
 private class Node {
 boolean isKey;
 Map<Character, Node> map;
 private Node() {
 isKey = false;
 map = new HashMap<>();
 }
 }

 public String longestPrefixOf(String word) {
 int n = word.length();
 StringBuilder prefix = new StringBuilder();
 Node curr = _________________________;
 for (___) {

 }
 return __
 }
}

4 Tries and Sorting

Solution:
public String longestPrefixOf(String word) {
 int n = word.length();
 StringBuilder prefix = new StringBuilder();
 Node curr = root;
 for (int i = 0; i < n; i++) {
 char c = word.charAt(i);
 if (!curr.map.containsKey(c)) {
 break;
 }
 curr = curr.map.get(c);
 prefix.append(c);
 }
 return prefix.toString();
}

Tries and Sorting 5

3 All Sorts of Sorts
Show the steps taken by each sort on the following unordered list:

0, 4, 2, 7, 6, 1, 3, 5

(a) Insertion sort
Solution:

0 | 4 2 7 6 1 3 5
0 4 | 2 7 6 1 3 5
0 2 4 | 7 6 1 3 5
0 2 4 7 | 6 1 3 5
0 2 4 6 7 | 1 3 5
0 1 2 4 6 7 | 3 5
0 1 2 3 4 6 7 | 5
0 1 2 3 4 5 6 7 |

(b) Selection sort
Solution:

0 | 4 2 7 6 1 3 5
0 1 | 2 7 6 4 3 5
0 1 2 | 7 6 4 3 5
0 1 2 3 | 6 4 7 5
0 1 2 3 4 | 6 7 5
0 1 2 3 4 5 | 7 6
0 1 2 3 4 5 6 | 7
0 1 2 3 4 5 6 7 |

(c) Merge sort

Solution:

0 4 2 7 6 1 3 5
0 4 2 7 6 1 3 5
0 4 2 7 6 1 3 5
0 4 2 7 6 1 3 5
0 4 2 7 1 6 3 5
0 2 4 7 1 3 5 6
0 1 2 3 4 5 6 7

(d) Use heapsort to sort the following array (hint: draw out the heap).
Draw out the array at each step: 0, 6, 2, 7, 4

6 Tries and Sorting

Solution: First, we need to heapify our array. We convert the current array to a max heap:

0

6 2

7 4

Recall that to heapify our array, we bubble down in reverse level order (bottom to top, right to left). This
means we start by bubbling down 4, which in this case gives us the same heap structure. Bubbling down
7, and then 2, leaves the heap unchanged as well. Bubbling down 6 (swapping 6 and 7) then gives us the
following:

0

7 2

6 4

Bubbling down 0 gives us our final heap:

7

6 2

0 4

Note that as we heapify, we also modify the underlying array representation as well. This means that our
final array looks like [7, 6, 2, 0, 4]. We then begin popping off the max value from the heap, placing it at
the back of the array. Note that our underlying array representation doesn’t consider the popped value as
part of the heap any more. We start by popping off 7 and bubbling down:

7

6 2

0 4

4

6 2

0

6

4 2

0

Our array now looks like this: [6, 4, 2, 0, 7], where the bolded section is considered sorted and not part
of the heap. We the continue by popping off 6:

6

4 2

0

0

4 2

4

0 2

Tries and Sorting 7

and the array looks like [4, 0, 2, 6, 7]. We then pop off 4:

4

0 2

2

0

and our array looks like [2, 0, 4, 6, 7]. In a similar fashion, we pop off 2 and 0 from our heap, resulting
in [0, 2, 4, 6, 7] and finally our sorted array: [0, 2, 4, 6, 7]

	A Wordsearch
	Longest Prefix
	All Sorts of Sorts

