CS 61B Midterm Review
Fau 2025 Exam-Level Discussion 10: November 03, 2025

1 Recursive

For each of the following functions, give the tightest asymptotic runtime bound.

(a) Hint: Draw out the recursive tree!

void f(int N) {
if (N <= 1) {

return;
}
f(N - 1);
f(N - 1);
f(N - 1)

(b) Assume that constantWork(N) runs in constant ©(1) time.

void f(int N) {
if (N <= 1) {
return;
}
constantWork(N); // Runs in constant time
f(N/ 2);
f(N/ 2);



2

(¢) What is the best and worst case runtime of alpha?

Midterm Review

public void alpha(int N) {
if (N 4==01] N<=0) {

return;

}
alpha(N - 4);
}
Best Case:
O e()
O ©(log(log N))

O 6((log N)?)

Worst Case:
O e
O ©(log(log N))
O ©((log N)?)

O ©(logN)
O o)

O 6(NlogN)

O 6(log N)
O ew)
O 6(NlogN)

O e(n?)
O 6(N?logN)

O e(n?)

O e(v?)
O ©(N?logN)

O e(n?)

O 6(N310gN)

Worse than
o O(N3log N)

O Never terminates
(infinite loop)

O 6(N3%logN)

Worse than
o O(N3log N)

O Never terminates
(infinite loop)



Midterm Review 3

This page was intentionally left blank.



4

Midterm Review

2 Comparisons Between Combinations

(a)

Consider the four cases below, and decide whether the Comparable or Comparator interface is better
suited for the job.

We are writing a custom 61BStudent class, and want to define the default comparison behavior to be a
comparison between their Integer studentIDs.

O Comparable O Comparator

We are writing a custom Dog class with many different attributes, including size, age, and timesBarked.
We want to be able to sort 3 lists of Dogs by each of these attributes separately.

O Comparable O Comparator

We have a list of Strings and want to sort them by an Integer frequency value stored in an external
TreeMap (sound familiar?)

O Comparable O Comparator

We are writing a custom static sorting method that takes in a List and destructively sorts it. We want
to be able to sort anything that has a predefined natural order.

O Comparable O Comparator

Consider the City and CityPair classes below.

public class City {

private String name;
private double x;
private double y;
private int ranking;

/* Constructor not shown...*/

}
public class CityPair {

private City a;
private City b;

public CityPair(City a, City b) {
this.a = a;
this.b = b;

}

@0verride
public boolean equals(Object other) {
// Two CityPairs are equal if they contain the same two cities.
if (other instanceof CityPair p) {
return ((this.a == p.a) && (this.b == p.b)) ||
((this.a == p.b) &% (this.b == p.a));
}

return false;



Midterm Review 5

Implement the static method proximitySort, that takes in a Set of cities and returns a List of CityPair
objects, sorted from closest to furthest for every possible pair of distinct cities. Assume proximitySort is in
the same file as City and CityPair. Assume that CityPair has a valid and good hash function.

Additionally, implement the pairDistance helper method and DistanceComparator nested class.
DistanceComparator compares CityPair objects such that CityPairs with a lower Euclidean distance between
their respecitve City objects are considered “less than” those with a greater Euclidean distance.

Remember that the Euclidean distance formula is \/(av2 — )% + (y, — yy)? for two points (z,,2,), (¥, Ys)

The square root function Math.sqrt(double a) and the power function Math.pow(double base, int
exponent) may come in handy.

List.sort takes in a Comparator, and returns a sorted list according to the ordering defined by the comparator.

public static List<CityPair> proximitySort(Set<City> cities) {

<CityPair> allCombinations = H
for ( : ) {
for ( : ) {
if ( ) {
allCombinations.add( )
}
}
}
<CityPair> orderedCombinations = new ( )
return orderedCombinations.sort( )

}

public static double pairDistance(CityPair p) {
// Returns the euclidean distance between the two cities represented by a CityPair

return

public class DistanceComparator implements <CityPair> {

@0verride

public int compare(CityPair p1l, CityPair p2) {
Double distancel = pairDistance(pl);
Double distance2 = pairDistance(p2);

return H




6 Midterm Review

3 Filter

We want to make a FilteredList class that selects only certain elements of a List during iteration. To do
so, we're going to use the Predicate interface defined below. Note that it has a method, test that takes in
an argument and returns true if we want to keep this argument or false otherwise.

public interface Predicate<T> {

boolean test(T x);
}

For example, if L is any kind of object that implements List<String> (that is, the standard java.util.List),
then FilteredList<String> FL = new FilteredList<>(L, filter); gives an iterable containing all items,
x, in L for which filter.test(x) is true. Here, filter is of type Predicate.

Fill in the FilteredList class on the following page.



Midterm Review 7

public class FilteredList<T> {

public FilteredList (List<T> L, Predicate<T> filter) {

@0verride
public Iterator<T> iterator() {

3

private class FilteredListIterator implements Iterator<T> {

public FilteredListIterator() {

3

@0verride
public boolean hasNext() {

3

@0verride
public T next() {



8 Midterm Review

4 A Tree Takes on Craphs

Your friend at Stanford has come to you for help on their homework! For each of the following statements,
determine whether they are true or false; if false, provide counterexamples.

(a) “A graph with edges that all have the same weight will always have multiple MSTs.”

(b) “No matter what heuristic you use, A* search will always find the correct shortest path.”

(c) “If you add a constant factor to each edge in a graph, Dijkstra’s algorithm will return the same shortest

paths tree.”



	Recursive
	Comparisons Between Combinations
	Filter
	A Tree Takes on Graphs

