
CS 61B Midterm Review
Fall 2025 Exam-Level Discussion 10: November 03, 2025

1 Recursive
For each of the following functions, give the tightest asymptotic runtime bound.

(a) Hint: Draw out the recursive tree!
void f(int N) {
 if (N <= 1) {
 return;
 }
 f(N - 1);
 f(N - 1);
 f(N - 1);
}

Θ(3𝑁). Drawing out the recursive tree, the 𝑖-th level does 3𝑖 work. There are 𝑁 levels total so the total
work done is 1 + 31 + 32 +…+ 3𝑁 = Θ(3𝑁).

(b) Assume that constantWork(N) runs in constant Θ(1) time.
void f(int N) {
 if (N <= 1) {
 return;
 }
 constantWork(N); // Runs in constant time
 f(N / 2);
 f(N / 2);
}

Θ(𝑁). Drawing out the recursive tree, the first level has 1 work, the next level has 2 work, and so, doubling
each layer. This means we get a sum 2{0} + 2{1} + 2{2} +…+ 2{ℎ}, where ℎ is the height of the tree. To
find ℎ, we ask ourselves how many times we can divide 𝑁2 before reaching 1, which is log{2}(𝑁). This gives
us, by the aforementioned sum, a runtime of Θ(2{log{2}(𝑁)}) = Θ(𝑁).

2 Midterm Review

(c) What is the best and worst case runtime of alpha?
public void alpha(int N) {
 if (N % 4 == 0 || N <= 0) {
 return;
 }
 alpha(N - 4);
}

Best Case:

Θ(1)

Θ(log(log𝑁))

Θ((log𝑁)2)

Θ(log𝑁)

Θ(𝑁)

Θ(𝑁 log𝑁)

Θ(𝑁2)

Θ(𝑁2 log𝑁)

Θ(𝑁3)

Θ(𝑁3 log𝑁)

Worse than
Θ(𝑁3 log𝑁)

Never terminates
(infinite loop)

Worst Case:

Θ(1)

Θ(log(log𝑁))

Θ((log𝑁)2)

Θ(log𝑁)

Θ(𝑁)

Θ(𝑁 log𝑁)

Θ(𝑁2)

Θ(𝑁2 log𝑁)

Θ(𝑁3)

Θ(𝑁3 log𝑁)

Worse than
Θ(𝑁3 log𝑁)

Never terminates
(infinite loop)

Midterm Review 3

2 Comparisons Between Combinations
(a) Consider the four cases below, and decide whether the Comparable or Comparator interface is better

suited for the job.

We are writing a custom 61BStudent class, and want to define the default comparison behavior to be a
comparison between their Integer studentIDs.

Comparable Comparator

We are writing a custom Dog class with many different attributes, including size, age, and timesBarked.
We want to be able to sort 3 lists of Dogs by each of these attributes separately.

Comparable Comparator

We have a list of Strings and want to sort them by an Integer frequency value stored in an external
TreeMap (sound familiar?)

Comparable Comparator

We are writing a custom static sorting method that takes in a List and destructively sorts it. We want
to be able to sort anything that has a predefined natural order.

Comparable Comparator

(b) Consider the City and CityPair classes below.
public class City {

 private String name;
 private double x;
 private double y;
 private int ranking;

 /* Constructor not shown...*/
}

public class CityPair {

 private City a;
 private City b;

 public CityPair(City a, City b) {
 this.a = a;
 this.b = b;
 }

 @Override
 public boolean equals(Object other) {
 // Two CityPairs are equal if they contain the same two cities.
 if (other instanceof CityPair p) {
 return ((this.a == p.a) && (this.b == p.b)) ||
 ((this.a == p.b) && (this.b == p.a));
 }
 return false;
 }
}

4 Midterm Review

Implement the static method proximitySort, that takes in a Set of cities and returns a List of CityPair
objects, sorted from closest to furthest for every possible pair of distinct cities. Assume proximitySort is in
the same file as City and CityPair. Assume that CityPair has a valid and good hash function.

Additionally, implement the pairDistance helper method and DistanceComparator nested class.
DistanceComparator compares CityPair objects such that CityPairs with a lower Euclidean distance between
their respecitve City objects are considered “less than” those with a greater Euclidean distance.

Remember that the Euclidean distance formula is √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 for two points (𝑥1, 𝑥2), (𝑦1, 𝑦2)

The square root function Math.sqrt(double a) and the power function Math.pow(double base, int
exponent) may come in handy.

List.sort takes in a Comparator, and returns a sorted list according to the ordering defined by the comparator.
public static List<CityPair> proximitySort(Set<City> cities) {

 Set<CityPair> allCombinations = new HashSet<>();

 for (City a : cities) {

 for (City b : cities) {

 if (a != b) {

 allCombinations.add(new CityPair(a, b));

 }
 }
 }

 List<CityPair> orderedCombinations = new ArrayList(allCombinations);

 return orderedCombinations.sort(new DistanceComparator())

}

public static double pairDistance(CityPair p) {
 // Returns the euclidean distance between the two cities represented by a CityPair

 return Math.sqrt(Math.pow(p.b.x - p.a.x, 2) + Math.pow(p.b.y - p.a.y, 2));

}

public class DistanceComparator implements Comparator<CityPair> {

 @Override
 public int compare(CityPair p1, CityPair p2) {
 Double distance1 = pairDistance(p1);
 Double distance2 = pairDistance(p2);

 return distance1.compareTo(distance2);

 }
}

Midterm Review 5

3 Filter
We want to make a FilteredList class that selects only certain elements of a List during iteration. To do
so, we’re going to use the Predicate interface defined below. Note that it has a method, test that takes in
an argument and returns true if we want to keep this argument or false otherwise.
public interface Predicate<T> {
boolean test(T x);
}

For example, if L is any kind of object that implements List<String> (that is, the standard java.util.List),
then FilteredList<String> FL = new FilteredList<>(L, filter); gives an iterable containing all items,
x, in L for which filter.test(x) is true. Here, filter is of type Predicate.

Fill in the FilteredList class on the following page.

6 Midterm Review

public class FilteredList<T> implements Iterable<T> {

 public FilteredList (List<T> L, Predicate<T> filter) {

 }

 @Override
 public Iterator<T> iterator() {

 }

 private class FilteredListIterator implements Iterator<T> {

 public FilteredListIterator() {

 }

 @Override
 public boolean hasNext() {

 }

 @Override
 public T next() {

 }

 }
}

Midterm Review 7

Here is a video walkthrough of the solutions.
import java.util.*;

class FilteredList<T> implements Iterable<T> {
 List<T> list;
 Predicate<T> pred;

 public FilteredList(List<T> L, Predicate<T> filter) {
 this.list = L;
 this.pred = filter;
 }

 public Iterator<T> iterator() {
 return new FilteredListIterator();
 }

 private class FilteredListIterator implements Iterator<T> {
 int index;

 public FilteredListIterator() {
 index = 0;
 moveIndex();
 }

 @Override
 public boolean hasNext() {
 return index < list.size();
 }

 @Override
 public T next() {
 if (!hasNext()) {
 throw new NoSuchElementException();
 }
 T answer = list.get(index);
 index += 1;
 moveIndex();
 return answer;
 }
 private void moveIndex() {
 while (hasNext() && !pred.test(list.get(index))) {
 index += 1;
 }
 }
 }
}

https://youtu.be/7KADPTgZsno

8 Midterm Review

Alternate Solution: Although this solution provides the right functionality, it is not as efficient as the
first one. Imagine you only want the first couple items from the iterable. Is it worth processing the entire list
in the constructor? It is not ideal in the case that our list is millions of elements long. The first solution is
different in that we “lazily” evaluate the list, only progressing our index on every call to next and hasNext.
However, this solution may be easier to digest.
import java.util.*;

class FilteredList<T> implements Iterable<T> {
 List<T> list;
 Predicate<T> pred;

 public FilteredList(List<T> L, Predicate<T> filter) {
 this.list = L;
 this.pred = filter;
 }

 public Iterator<T> iterator() {
 return new FilteredListIterator();
 }

 private class FilteredListIterator implements Iterator<T> {
 LinkedList<T> items;

 public FilteredListIterator() {
 items = new LinkedList<>();
 for (T item: list) {
 if (pred.test(item)) {
 items.add(item);
 }
 }
 }

 @Override
 public boolean hasNext() {
 return !items.isEmpty();
 }

 @Override
 public T next() {
 if (!hasNext()) {
 throw new NoSuchElementException();
 }
 return items.removeFirst();
 }
 }
}

Midterm Review 9

4 A Tree Takes on Graphs
Your friend at Stanford has come to you for help on their homework! For each of the following statements,
determine whether they are true or false; if false, provide counterexamples.

(a) “A graph with edges that all have the same weight will always have multiple MSTs.”

Solution: False: Consider a tree (N nodes and N - 1 edges, no cycles, connected) - there is only one way
to connect a tree, so it will be its own MST (so there is only one MST for a tree).

(b) “No matter what heuristic you use, A* search will always find the correct shortest path.”

Solution: False: Here, A* would incorrectly return A - B - D as the shortest path from A to D. Starting
at A, we would add B to the queue with priority 1+1 (the known distance to B, as well as our estimated
distance from B to the goal), and we would add C to the queue with priority 1+100 (the known distance
to C, as well as our estimated distance from C to the goal). We then pop B off the queue, and add D to
the queue with priority 11+0 (the known distance to D, as well as the estimated distance from D to the
goal). Our queue now contains C with priority 101, and D with priority 11, so we pop D off the queue and
complete our search, returning A - B - D as the shortest path instead of the correct answer: A - C - D.

In general, A* is only guaranteed to be correct if the heuristic is good-specifically, it should be both
admissible and consistent (note that applying admissibility and consistency are out of scope for this
class, you only need to know the definition). In the example given, our heuristic is neither admissible nor
consistent.

A
h = 2

B
h = 1

C
h=100

D
h = 0

(c) “If you add a constant factor to each edge in a graph, Dijkstra’s algorithm will return the same shortest
paths tree.”

False: this can be disproved with the example below, where we add a constant 𝑐 = 2 to every edge. Adding
a constant factor per edge will disadvantage paths with more edges. In our example, though A - B - C had
more edges, in our original graph it still has shorter total path cost, at 1 + 1 = 2. On the other hand, A
- C had fewer edges but larger total path cost, 3. After adding a constant factor, however, the A - B - C
path cost was (1 + 2) + (1 + 2) = 6 and the A - C had a path cost of (2 + 3) = 5. So before the addition,
Dijkstra’s shortest path tree would have said the shortest path from A to C was A - B - C, but afterwards
it would say A - C.

1 1

3

3 3

5

A

B

C A

B

C

	Recursive
	Comparisons Between Combinations
	Filter
	A Tree Takes on Graphs

