
CS 61B Asymptotics and Disjoint Sets
Fall 2025 Exam-Level Discussion 05: September 29, 2025

1 Finish the Runtimes
Below we see some standard nested for loops, but with missing pieces!

For each part, some of the blanks will be filled in, and a desired runtime will be given. Fill in the remaining
blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math.pow helpful.

(a) Desired runtime: Θ(𝑁2)
for (int i = 1; i < N; i = i + 1) {

 for (int j = 1; j < i; j = j + 1) {

 System.out.println("This is one is low key hard");
 }
}

Remember the arithmetic series 1 + 2 + 3 + 4 +…+𝑁 = Θ(𝑁2). We get this series by incrementing 𝑗 by
1 per inner loop.

(b) Desired runtime: Θ(log(𝑁))
for (int i = 1; i < N; i = i * 2) {

 for (int j = 1; j < j < 2; j = j * 2) {

 System.out.println("This is one is mid key hard");
 }
}

Any constant would work here, 2 was chosen arbitrarily.

The outer loop already runs log 𝑛 times, since 𝑖 doubles each time. This means the inner loop must do
constant work (so any constant j < k would work).

(c) Desired runtime: Θ(2𝑁)
for (int i = 1; i < N; i = i + 1) {

 for (int j = 1; j < Math.pow(2, i); j = j + 1) {

 System.out.println("This is one is high key hard");
 }
}

Remember the geometric series 1 + 2 + 4 +…+ 2𝑁 = Θ(2𝑁). We notice that 𝑖 increments by 1 each time,
so in order to achieve this 2𝑁 runtime, we must run the inner loop 2𝑖 times per outer loop iteration.

(d) Desired runtime: Θ(𝑁3)

2 Asymptotics and Disjoint Sets

for (int i = 1; i < Math,pow(2, N); i = i * 2) {

 for (int j = 1; j < N * N; j = j + 1) {

 System.out.println("yikes");
 }
}

for (int i = 1; i < Math.pow(2, N); i = i * 2) {
 for (int j = 1; j < N * N; j = j + 1) {
 System.out.println("yikes");
 }
}

One way to get 𝑁3 runtime is to have the outer loop run 𝑁 times, and the inner loop run 𝑁2 times per
outer loop iteration. To make the outer loop run 𝑁 times, we need stop after multiplying i = i * 2 𝑁
times, giving us the condition i < Math.pow(2, N). To make the inner loop run 𝑁2 times, we can simply
increment by 1 each time.

Asymptotics and Disjoint Sets 3

2 Disjoint Sets
For each of the arrays below, write whether this could be the array representation of a weighted quick union
with path compression and explain your reasoning. Break ties by choosing the smaller integer to be
the root.

There are three criteria here that invalidate a representation:
• If there is a cycle in the parent-link.
• For each parent-child link, the tree rooted at the parent is smaller than the tree rooted at the child

before the link (you would have merged the other way around).
• The height of the tree is greater than log2 𝑛, where 𝑛 is the number of elements.

(a)
1 2 3 0 1 1 1 4 4 5

Impossible: has a cycle 0-1, 1-2, 2-3, and 3-0 in the parent-link representation.

(b)
9 0 0 0 0 9 9 9 −10

Impossible: the nodes 1, 2, 3, 4, and 5 must link to 0 when 0 is a root; hence, 0 would not link to 9 because
0 is the root of the larger tree.

(c)
1 2 3 4 5 6 7 8 9 −10

Impossible: tree rooted at 9 has height 9 > log2 10.

(d)
−10 0 0 0 0 1 1 1 6 2

Possible: 8-6, 7-1, 6-1, 5-1, 9-2, 3-0, 4-0, 2-0, 1-0.

(e)
−10 0 0 0 0 1 1 1 6 8

Impossible: tree rooted at 0 has height 4 > log2 10.

(f)
−7 0 0 1 1 3 3 −3 7 7

Impossible: tree rooted at 0 has height 3 > log2 7.

4 Asymptotics and Disjoint Sets

3 This is NOT an Interview!
Given an int x and a sorted array A of 𝑁 distinct integers, design an algorithm to find if there exists indices
i and j such that A[i] + A[j] == x.

Let’s start with the naive solution.
public static boolean findSum(int[] A, int x) {
 for (int i = 0; i < A.length; i++){
 for (int j = 0; j < A.length; j++) {
 if (A[i] + A[j] == x) return true;
 }
 }
 return false;
}

(a) How can we improve this solution? Hint: Does order matter here?

public static boolean findSumFaster(int[] A, int x){
 int left = 0;
 int right = A.length - 1;
 while (left <= right) {
 if (A[left] + A[right] == x) {
 return true;
 } else if (A[left] + A[right] < x) {
 left++;
 } else {
 right--;
 }
 }
 return false;
}

(b) What is the runtime of both the original and improved algorithm?

Naive: Worst = Θ(𝑁2), Best = Θ(1). Optimized: Worst = Θ(𝑁), Best = Θ(1)

	Finish the Runtimes
	Disjoint Sets
	This is NOT an Interview!

