CS 618 Asymptotics and Disjoint Sets
Fau 2025 Fxam-Level Discussion 05: September 29, 2025

1 Finish the Runtimes

Below we see some standard nested for loops, but with missing pieces!

For each part, some of the blanks will be filled in, and a desired runtime will be given. Fill in the remaining
blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math.pow helpful.

(a) Desired runtime: ©(N?)

for (int i =1; i < N; i=1+ 1) {
for (int j =1; j<i; j=3+1){

System.out.println("This is one is low key hard");

}

Remember the arithmetic series 1+2+34+4+ ...+ N = @(NQ). We get this series by incrementing j by

1 per inner loop.

(b) Desired runtime: ©(log(N))

for (int i =1; i < N; i =1 % 2) {

for (int j = 1; j < 1 <25 =3 *2) 1

System.out.println("This is one is mid key hard");

Any constant would work here, 2 was chosen arbitrarily.

The outer loop already runs logn times, since ¢ doubles each time. This means the inner loop must do
constant work (so any constant j < k would work).

Desired runtime: ©(2)

for (int i =1; i < N; i=1+ 1) {

for (int j = 1; j < Math.pow(2, i); j =3 + 1) {

System.out.println("This is one is high key hard");
}

. . N 7 - . .. ; .
Remember the geometric series 1 42 +4 + ... + 2V = @(2]\). We notice that ¢ increments by 1 each time,

so in order to achieve this 2%V runtime, we must run the inner loop 2* times per outer loop iteration.

(d) Desired runtime: ©(N3)

Asymptotics and Disjoint Sets

for (int i = 1; i < Math,pow(2, N); i =i * 2) {

for (int j =1; j<N*N; j=3+1)A
System.out.println("yikes");
}
}
for (int i = 1; i < Math.pow(2, N); i =i x 2) {
for (int j =1; j<N=x*N; j=3+1){
System.out.println("yikes");
}
}

One way to get N3 runtime is to have the outer loop run N times, and the inner loop run N? times per
outer loop iteration. To make the outer loop run N times, we need stop after multiplying i = i * 2 N

times, giving us the condition i < Math.pow(2, N). To make the inner loop run N? times, we can simply
increment by 1 each time.

Asymptotics and Disjoint Sets 3

2 Disjoint Sets

For each of the arrays below, write whether this could be the array representation of a weighted quick union

with path compression and explain your reasoning. Break ties by choosing the smaller integer to be
the root.

There are three criteria here that invalidate a representation:

o If there is a cycle in the parent-link.

e For each parent-child link, the tree rooted at the parent is smaller than the tree rooted at the child
before the link (you would have merged the other way around).

o The height of the tree is greater than log, n, where n is the number of elements.

(a)

9(0[0]1010[9(9]9] —10

Impossible: the nodes 1, 2, 3, 4, and 5 must link to 0 when 0 is a root; hence, 0 would not link to 9 because
0 is the root of the larger tree.

112131456 7]18]9]|—-10

—710]0) 11|33 -=3|7|7

Impossible: tree rooted at 0 has height 3 > log, 7.

4 Asymptotics and Disjoint Sets

3 This is NOT an Interview!

Given an int x and a sorted array A of N distinct integers, design an algorithm to find if there exists indices
i and j such that A[i] + A[j] == x.

Let’s start with the naive solution.

public static boolean findSum(int[] A, int x) {
for (int i = 0; i < A.length; i++){
for (int j = 0; j < A.length; j++) {
if (A[i]l + A[j] == x) return true;
}
}

return false;

(a) How can we improve this solution? Hint: Does order matter here?

public static boolean findSumFaster(int[] A, int x){
int left = 0;
int right = A.length - 1;
while (left <= right) {
if (A[left] + Alright] == x) {
return true;
} else if (A[left] + A[right] < x) {
left++;
} else {
right--;
}
}

return false;

(b) What is the runtime of both the original and improved algorithm?

Naive: Worst = ©(N?), Best = O(1). Optimized: Worst = ©(N), Best = O(1)

	Finish the Runtimes
	Disjoint Sets
	This is NOT an Interview!

