CS 61B Comparators, Iterators, and [terables
Fau 2025 Fxam-Level Discussion 04: September 22, 2025

| MetaCompanson
Given IntList x, an IntList y, and a Comparator<Integer> c, the IntListMetaComparator performs a
comparison between x and y.

Specifically, the IntListMetaComparator performs a pairwise comparison of all the items in x and y. If the
lists are of different lengths, the extra items in the longer list are ignored. Let a be the number of items in
x that are less than the corresponding item in y according to c. Let 8 be the number of items in x that are
greater than the corresponding item in y according to c. If & > 3, then x is considered less than y. If a = 5,
then x is considered equal to y. If a < §, then x is considered greater than y. For example:

Comparator<Integer> c = new FiveCountComparator(); //compares # of fives
IntList x = [65, 70, 90, 115, 5]; //e.g. 55 has 2 fives
IntlList y = [150, 35, 215, 25];

IntListMetaComparator ilmc = new IntListMetaComparator(c);
ilmc.compare(x, y); // returns negative number

For the example above, according to the FiveCountComparator, we have that 55 > 150, 70 < 35, 90 < 215,
and 115 = 25. This yields @ = 2 and § = 1, and thus ilmc.compare will return a negative number. Fill in the
code below:

2 Comparators, Iterators, and Iterables

public class IntListMetaComparator implements Comparator<IntList> {

/* Returns negative number if more items in x are less,
Returns positive number if more items in x are greater.

If one list is longer than the other, extra items are ignored.

public int compare(IntList x, IntList y) {

if (o ___ > W ___ N A
e
if (o _____) o
return ____________________________ ;
Yelse if (________________________) {
return __________________________________ ;
} else {
return __________________________________ ;
}

*/

Comparators, Iterators, and Iterables

import java.util.Comparator;

public class IntListMetaComparator implements Comparator<IntList> {
private Comparator<Integer> givenC;

public IntListMetaComparator (Comparator<Integer> givenC) {
this.givenC = givenC;

3

/*%
* Returns a negative number if more items in x are less.
* Returns a positive number if more items in x are greater.
* If one list is longer than the other, extra items are ignored.
*/
@0verride
public int compare(IntList x, IntList y) {
if (x == null || y == null) {
return 0;

3

int compValue = givenC.compare(x.first, y.first);

if (compValue > 0) {

return compare(x.rest, y.rest) + 1;
} else if (compValue < 0) {

return compare(x.rest, y.rest) - 1;
} else {

return compare(x.rest, y.rest);

3

4 Comparators, Iterators, and Iterables

2 Inheritance Syntax

Suppose we have the classes below:

public class ComparatorTester {
public static void main(String[] args) {
String[] strings = new String[] {"horse", "cat", "dogs"};
System.out.println(Maximizer .max(strings, new LengthComparator()));

}

public class LengthComparator implements Comparator<String> {
@0verride
public int compare(String a, String b) {
return a.length() - b.length();
1
1

public class Maximizer {
/%%

* Returns the maximum element in items, according to the given Comparator.
*/

// public static <T> T max(T[] items, Comparator<T> c) {

public static <String> String max(String[] items, Comparator<String> c) {

int cmp = c.compare(items[i], items[maxDex]);

(a) Suppose we omit the compare method from LengthComparator. Which of the following will fail to
compile?

O ComparatorTester. java

O LengthComparator. java

O Maximizer. java

O Comparator. java

LengthComparator, because it is claiming to be a Comparator, but it is missing a compare method.
(b) Suppose we omit implements Comparator<String> in LengthComparator. Which file will fail to compile?

I:l ComparatorTester. java

I:l LengthComparator. java

I:I Maximizer. java

I:l Comparator. java

Comparators, Iterators, and Iterables 5

ComparatorTester, because we are trying to provide a LengthComparator (which isn’t a Comparator) to
the method max, which expects a Comparator.

LengthComparator, because compare is no longer overriding anything, thus causing the @0verride to
trigger a compiler error.
(¢) Suppose we removed @0verride. What are the implications?

The code will work fine, but it’s best practice to say “Override” to prevent typos and make our code

more clear.

6 Comparators, Iterators, and Iterables

3 lterator of lterators

Implement an IteratorOfIterators which takes in a List of Iterators of Integers as an argument. The
first call to next () should return the first item from the first iterator in the list. The second call should return
the first item from the second iterator in the list. If the list contained n iterators, the n+1th time that we call
next (), we would return the second item of the first iterator in the list.

Note that if an iterator is empty in this process, we continue to the next iterator. Then, once all the iterators
are empty, hasNext should return false. For example, if we had 3 Iterators A, B, and C such that A
contained the values [1, 3, 4, 5], B was empty, and C contained the values [2], calls to next() for our
IteratorOfIterators would return [1, 2, 3, 4, 5].

public class IteratorOflterators ________________________ __ _ _ _ _ _ o ______ {
private List<Iterator<Integer>> iterators;
private int curr;
public IteratorOfIterators(List<Iterator<Integer>> a) {
iterators = new LinkedList<>();

for (__ _ o) {
if (e) {
}
}
curr = 0;
}
@0verride
public boolean hasNext() {
return __ _ _ H
}
@0verride

public Integer next() {
if ('hasNext()) { throw new NoSuchElementException(); }
Iterator<Integer> currlterator = _________ ___ _ ____ _ 5
int result = 5

return result;

Comparators, Iterators, and Iterables

Solution:

public class IteratorOfIterators implements Iterator<Integer> {
private List<Iterator<Integer>> iterators;
private int curr;

public IteratorOfIterators(List<Iterator<Integer>> a) {
iterators = new LinkedList<>();
for (Iterator<Integer> iterator : a) {
if (iterator.hasNext()) {
iterators.add(iterator);

¥
T
curr = 0;
¥
@0verride

public boolean hasNext() {
return !iterators.isEmpty();

}

@0verride
public Integer next() {
if (thasNext()) {
throw new NoSuchElementException();
}
Iterator<Integer> currIterator = iterators.get(curr);
int result = iterators.get(curr).next();
if (!currIterator.hasNext()) {
iterators.remove (curr) ;
if (curr >= iterators.size()) {
curr = 0;
}
} else {
curr = (curr + 1) % iterators.size();
}

return result;

For this problem, we use the instance variable iterators to store all the iterators that still has elements.

We use curr to indicate the next iterator to get the next element from. Therefore, in the constructor, we
initialize iterators by iterating through the input list of iterators and adding the iterators that are not
empty. We then initialize curr to 0. For the hasNext () method, we can test whether our list iterators is
empty. For the next () method, we first check if there are any elements left to iterate through (throwing an

error if we do not have). If there are, we get the current iterator and the next element from that iterator.

If the iterator is empty, we remove it from the list of iterators. Otherwise, we increment curr to the next
iterator. Notice that we do not increment curr if we remove an iterator from the list, as all the indices of
the following iterators will shift by 1, and next iterator will take its place.

7

	MetaComparison
	Inheritance Syntax
	Iterator of Iterators

