CS 61B Sorting 11
Fau 2025 Discussion 12: November 24, 2025

1 Radix Sorts

a) Sort the following list using LSD Radix Sort with counting sort. Show the steps taken after each round
of counting sort. The first row is the original list and the last two rounds are already filled for you.

30395 30326 43092 30315
1
2
3
4 30315 30326 30395 43092
5 30315 30326 30395 43092
Solution:

The underlined sections denote the digits that have already been sorted.

30395 30326 43092 30315
1 43092 30395 30315 30326
2 30315 30326 43092 30395
3 43092 30315 30326 30395
4 30315 30326 30395 43092
5 30315 30326 30395 43092

b) Sort the following list using MSD Radix Sort with counting sort. Show the steps taken after each round
of counting sort. The first row is the original list and the first round is already filled for you.

21295 22316 30753 21248 30751

1 21295 22316 21248 30753 30751

[SA 00 TN ENGURN B)

2

c)

Sorting 111

Solution:
21295 22316 30753 21248 30751
1 21295 22316 21248 30753 30751
2 21295 21248 22316 30753 30751
3 21295 21248 22316 30753 30751
4 21248 21295 22316 30753 30751
5 21248 21295 22316 30751 30753

Give the best case runtime, worst case runtime, and stability for both LSD and MSD radix sort. Assume
we have N elements, a radix R, and a maximum number of digits in an element W.

’(1‘};1;:) Complexity ’g‘\;vn;ist) Complexity Stability
LSD Radix Sort
MSD Radix Sort
Solution:
Time Complexity Time Complexity Stability
(Best) (Worst)
LSD Radix Sort O(W(N + R)) O(W(N + R)) Yes
MSD Radix Sort O(N + R) O(W(N + R)) Yes

We saw in part (c) that radix sort has good runtime with respect to the number of elements in the list.
Given this fact, can we say that radix sort is the best sort to use?

No. Though radix sort runs linear with respect to the number of elements in the list, the runtime also
depends on the size of the radix R and the length of the longest “word” W (or the number of digits in a
number). Additionally, it is not always possible to use radix sort, because not all objects can be split up
into digits. However, comparison sorts can be used on any object that defines a compareTo method, and

would work well with compareTo methods that are fast.

Sorting 111 3

2 LSD Radix Sort

In this question, we are trying to sort a list of strings consisting of only lowercase alphabets using LSD
radix sort. In order to perform LSD radix sort, we need to have a subroutine that sorts the strings based on a
specific character index. We will use counting sort as the subroutine for LSD radix sort.

(a) Implement the method stableSort below. This method takes in items and an index. It sorts the strings
in items by their character at the index index alphabetically. It is stable and should run in O(N) time,

where N is the number of strings in items.

/* Sorts the strings in “items ™ by their character at the “index” index alphabetically.
This should modify items instead of returning a copy of it. */
private static void stableSort(List<String> items, int index) {
Queue<String>[] buckets = new Queue[26];
for (int i = 0; i < 26; i++) {
buckets[i] = new ArrayDeque<>();
b

for (String item : items) {

char ¢ = item.charAt(index);

int idx = c - 'a';

buckets[idx].add(item);

int counter = 0;

for (String item : items) {

while (!bucket.isEmpty()) {

items.set(counter, bucket.poll());
counter++;

}

(a) Now, using the stableSort method, implement the method 1sd below. This method takes in a List of
Strings and sorts them using LSD radix sort. It should run in O(N¢ - M) time, where N is the number
of strings in the list and M is the length of each string.

public static List<String> lsd(List<String> items) {
int length = items.get(0).length();

for (int i = length - 1; i >= 0; i--) {

stableSort(items, i);

return items;

3

4 Sorting 111

3 MSD Radix Sort

Now, let’s solve the same problem as the previous part, but using a different algorithm. Recursively implement
the method msd below, which runs MSD radix sort on a List of Strings and returns a sorted List of Strings.
For simplicity, assume that each string is of the same length, and all characters are lowercase alphabets. You
may not need all of the lines below.

In lecture, recall that we used counting sort as the subroutine for MSD radix sort, but any stable sort works!
For the subroutine here, you may use the stableSort method from the previous question, which sorts the
given list of strings in place, comparing two strings by the given index. Finally, you may find following methods
of the List class helpful:

(a) List<E> subList(int fromIndex, int toIndex). Returns the portion of this list between the specified
fromIndex, inclusive, and toIndex, exclusive.

(b) addAl11(Collection<? extends E> c). Appends all of the elements in the specified collection to the end
of this list, in the order that they are returned by the specified collection’s iterator.

public static List<String> msd(List<String> items) {
return msd(items, 0);
}
private static List<String> msd(List<String> items, int index) {

if (items.size() <= 1 || index >= items.get(0).length()) {

return items;

List<String> answer = new ArrayList<>();
int start = 0;

stableSort(items, index);

for (int end = 1; end <= items.size(); end += 1) {

if
(end == items.size() || items.get(start).charAt(index) != items.get(end).charAt(index)) {
List<String> sublList = items.subList(start, end);;
answer.addAll (msd(subList, index + 1));
start = end;
}

}
return answer;

}

/* Sorts the strings in “items™ by their character at the “index” index alphabetically. */
private static void stableSort(List<String> items, int index) {
// Implementation not shown

}

	Radix Sorts
	LSD Radix Sort
	MSD Radix Sort

