C5 618
Fall 2025

1 A Wordsearch

Given an N by N wordsearch and N words, devise an algorithm (using pseudocode or describe it in plain
English) to solve the wordsearch in O(N?). For simplicity, assume no word is contained within another, i.e., if
the word “bear” is given, “be” wouldn’t also be given.

Tries and Sorting
Discussion 11: November 10, 2025

If you are unfamiliar with wordsearches or want to gain some wordsearch solving intuition, see below for an

example wordsearch.

Example Wordsearch:

SFTATRDVRGKEVIN
ATSKLNXFIHDPXHZ
CNEDXAJZGUNAIRU
JYI'LCVANESSAVPO
ABARLKFJQUSYHIC
VZUIUATQKDAAGRD
FSPEIDSTAASNMYN
WCTTSSHQTWHNGAU
SIWHPEAAENLITNYV
TYIAGLDBRKEYTYK
ALNN)JAJGETYAPEA
CXFIKIMUSLITYPR
EMUAMNTMAZXAHUE
YRAEKEYWIKOYOPN
RBCAQJVQIACROETF

Anirudh Anniyat Vanessa Ryan

Ashley Elaine Isabel

David Stella Karen

Ethan Kevin Teresa

Stacey Dawn

Hint: Add the words to a Trie, and you may find the longestPrefix0f operation helpful. Recall that
longestPrefix0f accepts a String key and returns the longest prefix of key that exists in the Trie, or null
if no prefix exists.

2 Tries and Sorting

Solution:

Algorithm: Begin by adding all the words we are querying for into a Trie. Next, we will iterate through
each letter in the wordsearch and see if any words start with that letter. For a word to start with a given
letter, note that it can go in one of eight directions — N, NE, E,; SE, S, SW, W, NW.

Looking at each direction, we will check if the string going in that direction has a prefix that exists in
our Trie, which we can do using longestPrefix0f. Note that words are not nested inside of others, so at
most one word can start from a given letter in a given direction. As such, if longestPrefix0f returns a
word, we know it is the only word that goes in that direction from that letter.

For instance, if we are at the letter “S” in the middle of the top row of the wordsearch above and are
considering the direction west, we would want to see if the string "SOHUMC" has a prefix that exists in the
given wordsearch. To efficiently perform this query, we call longestPrefix0f ("SOHUMC"), which, in this
case, returns "SOHUM", and we proceed by removing "SOHUM" from our Trie to signal that we found the
word "SOHUM".

We will repeat this process until all the words have been found, i.e. when the Trie is empty. Finally, note
that this is a very open-ended problem, so this is one of many possible solutions.

Runtime: We look at N2 letters. At each letter, we execute eight calls to longestPrefix0f which runs in
time linear to the length of the inputted string, which can be of at most length N, since that is the height
and width of the wordsearch. Thus, if we perform on the order of N work per letter and we look at N2
letters, the runtime is O(N3).

Tries and Sorting 3

2 Longest Prefix

Fill in the longestPrefix0f (String word) method below such that it returns the longest prefix of word that
is also a prefix of a key in the trie.

For example, if a TrieSet t contains keys {"cryst", "tries", "cr"}, then t.longestPrefix0f ("crystal")
returns "cryst" and t.longestPrefix0f ("crys") returns "crys".

The code uses the StringBuilder class to build strings character-by-character. To add a character to the end
of the StringBuilder, use the append(char c) method. Once all characters have been appended, the resulting
String is returned by the toString() method.

StringBuilder sb = new StringBuilder();
sb.append('a');

sb.append('b');
System.out.println(sb.toString()); // "ab"

public class TrieSet {
private Node root;
private class Node {
boolean isKey;
Map<Character, Node> map;
private Node() {
isKey = false;
map = new HashMap<>();

3

public String longestPrefix0f (String word) {
int n = word.length();
StringBuilder prefix = new StringBuilder();
Node curr = 5

4 Tries and Sorting

Solution:

public String longestPrefixO0f (String word) {

int n = word.length();
StringBuilder prefix = new StringBuilder();
Node curr = root;
for (int i 0; i < n; i++) {

char c word.charAt(i);

if (!curr.map.containsKey(c)) {

break;

}
curr = curr.map.get(c);
prefix.append(c);

}

return prefix.toString();

Tries and Sorting 5

3 Identifying Sorts

Below you will find intermediate steps in performing various sorting algorithms on the same input list. The

steps do not necessarily represent consecutive steps in the algorithm (that is, many steps are missing), but
they are in the correct sequence. For each of them, select the algorithm it illustrates from among the following

choices: insertion sort, selection sort, mergesort, quicksort (first element of sequence as pivot), and heapsort.
When we split an odd length array in half in mergesort, assume the larger half is on the right.

Input list: 1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

(a)

1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000
1429, 3291, 192, 1337, 7683, 594, 4242, 9001, 129, 1000, 4392
192, 1337, 1429, 3291, 7683, 129, 594, 1000, 4242, 4392, 9001
Solution: Mergesort. One identifying feature of mergesort is that the left and right halves do not interact
with each other until the very end. Further, note that the first line has had several steps applied to it, and
yet is completely unchanged. This is reflective of how mergesort at first simply partitions the array without

sorting anything.

1337, 192, 594, 129, 1000, 1429, 3291, 7683, 4242, 9001, 4392

192, 594, 129, 1000, 1337, 1429, 3291, 7683, 4242, 9001, 4392

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001

Solution: Quicksort. First item was chosen as pivot, so the first pivot is 1429, meaning the first iteration
should break up the array into something like | < 1429 | = 1429 | > 1429

1337, 1429, 3291, 7683, 192, 594, 4242, 9001, 4392, 129, 1000

192, 1337, 1429, 3291, 7683, 594, 4242, 9001, 4392, 129, 1000

192, 594, 1337, 1429, 3291, 7683, 4242, 9001, 4392, 129, 1000

Solution: Insertion Sort. Insertion sort starts at the front, and for each item, move to the front as far as
possible. These are the first few iterations of insertion sort so the right side is left unchanged

1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192

7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129, 9001

129, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 7683, 9001

Solution: Heapsort. This one’s a bit more tricky. Basically what’s happening is that the second line is in
the middle of heapifying this list into a maxheap. Then we continually remove the max and place it at
the end.

In all these cases, the final step of the algorithm will be this: 129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392,
7683, 9001

	A Wordsearch
	Longest Prefix
	Identifying Sorts

