CS 61B Tree Traversals, Graphs, and Shortest Paths
Fau 2025 Discussion 08: October 20, 2025

| Trees, Graphs, and Traversals

(a) Write the following traversals of the BST below.
Pre-order:
In-order:

Post-order:
Level-order (BFS):

(b) Write the graph below as an adjacency matrix, then as an adjacency list. What would be different if the
graph were undirected instead?

(¢) Write the order in which (1) DFS pre-order, (2) DFS post-order, and (3) BFS would visit nodes in the
same directed graph above, starting from vertex A. Break ties alphabetically.

Pre-order:
Post-order:

BF'S:

2 Tree Traversals, Graphs, and Shortest Paths

2 The Shortest Path to your Heart

For the graph below, let g(u, v) be the weight of the edge between any nodes u and v. Let h(u, v) be the
value returned by the heuristic for any nodes u and v.

Below, the pseudocode for Dijkstra’s and A* are both shown for your reference throughout the problem.

Dijkstra’s Pseudocode Ax Pseudocode

PQ = new PriorityQueue() PQ = new PriorityQueue()

PQ.add(4, 0) PQ.add(A, h(A, goal))

PQ.add(v, infinity) # (all nodes except A). PQ.add(v, infinity) # (all nodes except A).
distTo = {} # map distTo = {} # map

edgeTo = {} # map distTo[A] = O

distTo[A] = O distTo[v] = infinity # (all nodes except A).

distTo[v] = infinity # (all nodes except A).
while (not PQ.isEmpty()):

while (not PQ.isEmpty()): poppedNode, poppedPriority = PQ.pop()
poppedNode, poppedPriority = PQ.pop() if (poppedNode == goal): terminate
for child in poppedNode.children: for child in poppedNode.children:
potentialDist = distTo[poppedNode] + potentialDist = distTo[poppedNode] +
edgeWeight (poppedNode, child) edgeWeight (poppedNode, child)
if potentialDist < distTo[child]: if potentialDist < distTo[child]:
distTo.put(child, potentialDist) distTo.put(child, potentialDist)
PQ.ch Priorit hild, PQ.ch Priorit hild, tentialDist
potentiglﬁig%§e riority(chi Q.changePriority(chi potentialDis

deeTo[child] = dod + h(child, goal))

edgetolchi = poppedfiode edgeTo[child] = poppedNode

(a) Run Dijkstra’s algorithm to find the shortest paths from A to every other vertex. You may find it helpful
to keep track of the priority queue. We have provided a table to keep track of best distances, and the
adjacent vertex that has an edge going to the target vertex in the current shortest paths tree so far.

A B C D E F

distTo

edgeTo

Tree Traversals, Graphs, and Shortest Paths 3

(b) Given the weights and heuristic values for the graph above, what path would A search return, starting
from A and with F as a goal?

Edge Weights Heuristics

9(A,B) = h(A,F) =8
g(A,D)=5 | h(B,F)=16
9(B,C)=15 | h(C,F)=4

g(C,D)=1 h(D,F) =4
g(D,F) =4 h(E,F) =5
g(F,E)=1
g(E,C) =2

distTo

edgeTo

(c) Based on the heuristics for part b, is the A% heuristic for this graph good? In other words, will it always

give us the actual shortest path from A to F? If it is good, give an example of a change you would make
to the heuristic so that it is no longer good. If it is not, correct it.

4 Tree Traversals, Graphs, and Shortest Paths

3 Extra: Graph Conceptua]s

(a) Answer the following questions as either True or False and provide a brief explanation:

1. If a graph with n vertices has n — 1 edges, it must be a tree.
2. Every edge is looked at exactly twice in each full run of DFS on a connected, undirected graph.

3. In BFS, let d(v) be the minimum number of edges between a vertex v and the start vertex. For any
two vertices u, v in the fringe (recall that the fringe in BFS is a queue), |d(u) — d(v)| is always less
than 2.

(b) Given an undirected graph, provide an algorithm that returns true if a cycle exists in the graph, and false
otherwise. Also, provide a ©® bound for the worst case runtime of your algorithm.

	Trees, Graphs, and Traversals
	The Shortest Path to your Heart
	Extra: Graph Conceptuals

