
CS 61B Tree Traversals, Graphs, and Shortest Paths
Fall 2025 Discussion 08: October 20, 2025

1 Trees, Graphs, and Traversals
(a) Write the following traversals of the BST below.

Pre-order:
In-order:
Post-order:
Level-order (BFS):

10

3 12

1 7 11 14

13 15

(b) Write the graph below as an adjacency matrix, then as an adjacency list. What would be different if the
graph were undirected instead?

𝐴

𝐵

𝐶

𝐷

𝐹

𝐸

𝐺

(c) Write the order in which (1) DFS pre-order, (2) DFS post-order, and (3) BFS would visit nodes in the
same directed graph above, starting from vertex 𝐴. Break ties alphabetically.

Pre-order:

Post-order:

BFS:

2 Tree Traversals, Graphs, and Shortest Paths

2 The Shortest Path to your Heart
For the graph below, let g(u, v) be the weight of the edge between any nodes u and v. Let h(u, v) be the
value returned by the heuristic for any nodes u and v.

1

5

15

1

2

4

1

A

B

C

D

E

F

Below, the pseudocode for Dijkstra’s and A∗ are both shown for your reference throughout the problem.

Dijkstra’s Pseudocode
PQ = new PriorityQueue()
PQ.add(A, 0)
PQ.add(v, infinity) # (all nodes except A).

distTo = {} # map
edgeTo = {} # map
distTo[A] = 0
distTo[v] = infinity # (all nodes except A).

while (not PQ.isEmpty()):
 poppedNode, poppedPriority = PQ.pop()

 for child in poppedNode.children:
 potentialDist = distTo[poppedNode] +
 edgeWeight(poppedNode, child)

 if potentialDist < distTo[child]:
 distTo.put(child, potentialDist)
 PQ.changePriority(child,potentialDist)
 edgeTo[child] = poppedNode

A∗ Pseudocode
PQ = new PriorityQueue()
PQ.add(A, h(A, goal))
PQ.add(v, infinity) # (all nodes except A).

distTo = {} # map
distTo[A] = 0
distTo[v] = infinity # (all nodes except A).

while (not PQ.isEmpty()):
 poppedNode, poppedPriority = PQ.pop()
 if (poppedNode == goal): terminate

 for child in poppedNode.children:
 potentialDist = distTo[poppedNode] +
 edgeWeight(poppedNode, child)

 if potentialDist < distTo[child]:
 distTo.put(child, potentialDist)
 PQ.changePriority(child, potentialDist
 + h(child, goal))
 edgeTo[child] = poppedNode

(a) Run Dijkstra’s algorithm to find the shortest paths from 𝐴 to every other vertex. You may find it helpful
to keep track of the priority queue. We have provided a table to keep track of best distances, and the
adjacent vertex that has an edge going to the target vertex in the current shortest paths tree so far.

𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

distTo

edgeTo

Tree Traversals, Graphs, and Shortest Paths 3

(b) Given the weights and heuristic values for the graph above, what path would A∗ search return, starting
from 𝐴 and with 𝐹 as a goal?

Edge Weights Heuristics

𝑔(𝐴,𝐵) = 1
𝑔(𝐴,𝐷) = 5
𝑔(𝐵,𝐶) = 15
𝑔(𝐶,𝐷) = 1
𝑔(𝐷, 𝐹) = 4
𝑔(𝐹 ,𝐸) = 1
𝑔(𝐸,𝐶) = 2

ℎ(𝐴, 𝐹) = 8
ℎ(𝐵, 𝐹) = 16
ℎ(𝐶, 𝐹) = 4
ℎ(𝐷, 𝐹) = 4
ℎ(𝐸, 𝐹) = 5

𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

distTo

edgeTo

(c) Based on the heuristics for part b, is the A∗ heuristic for this graph good? In other words, will it always
give us the actual shortest path from A to F? If it is good, give an example of a change you would make
to the heuristic so that it is no longer good. If it is not, correct it.

4 Tree Traversals, Graphs, and Shortest Paths

3 Extra: Graph Conceptuals
(a) Answer the following questions as either True or False and provide a brief explanation:

1. If a graph with 𝑛 vertices has 𝑛 − 1 edges, it must be a tree.

2. Every edge is looked at exactly twice in each full run of DFS on a connected, undirected graph.

3. In BFS, let 𝑑(𝑣) be the minimum number of edges between a vertex 𝑣 and the start vertex. For any
two vertices 𝑢, 𝑣 in the fringe (recall that the fringe in BFS is a queue), |𝑑(𝑢) − 𝑑(𝑣)| is always less
than 2.

(b) Given an undirected graph, provide an algorithm that returns true if a cycle exists in the graph, and false
otherwise. Also, provide a Θ bound for the worst case runtime of your algorithm.

	Trees, Graphs, and Traversals
	The Shortest Path to your Heart
	Extra: Graph Conceptuals

