
CS 61B Tree Traversals, Graphs, and Shortest Paths
Fall 2025 Discussion 08: October 20, 2025

1 Trees, Graphs, and Traversals
(a) Write the following traversals of the BST below.

Pre-order:
In-order:
Post-order:
Level-order (BFS):

10

3 12

1 7 11 14

13 15

Solution:

Pre-order: 10 3 1 7 12 11 14 13 15

In-order: 1 3 7 10 11 12 13 14 15

Post-order: 1 7 3 11 13 15 14 12 10

Level-order (BFS): 10 3 12 1 7 11 14 13 15

(b) Write the graph below as an adjacency matrix, then as an adjacency list. What would be different if the
graph were undirected instead?

𝐴

𝐵

𝐶

𝐷

𝐹

𝐸

𝐺

2 Tree Traversals, Graphs, and Shortest Paths

Solution:
Matrix:
 A B C D E F G <- end node
A 0 1 0 1 0 0 0
B 0 0 1 0 0 0 0
C 0 0 0 0 0 1 0
D 0 1 0 0 1 1 0
E 0 0 0 0 0 1 0
F 0 0 0 0 0 0 0
G 0 0 0 0 0 1 0
^ start node

List:
A: {B, D}
B: {C}
C: {F}
D: {B, E, F}
E: {F}
F: {}
G: {F}

For the undirected version of the graph, the representations look a bit more symmetric. For your reference,
the representations are included below:

Matrix:
 A B C D E F G <- end node
A 0 1 0 1 0 0 0
B 1 0 1 1 0 0 0
C 0 1 0 0 0 1 0
D 1 1 0 0 1 1 0
E 0 0 0 1 0 1 0
F 0 0 1 1 1 0 1
G 0 0 0 0 0 1 0
^ start node

List:
A: {B, D}
B: {A, C, D}
C: {B, F}
D: {A, B, E, F}
E: {D, F}
F: {C, D, E, G}
G: {F}

(c) Write the order in which (1) DFS pre-order, (2) DFS post-order, and (3) BFS would visit nodes in the
same directed graph above, starting from vertex 𝐴. Break ties alphabetically.

Pre-order:
ABCFDE (G)

Post-order:
FCBEDA (G)

Tree Traversals, Graphs, and Shortest Paths 3

BFS:
ABDCEF (G)

To compute DFS, we maintain a stack of nodes, and a visited set. As soon as we add something to our
stack, we note it down for preorder. The top node in our stack represents the node we are currently on,
and the marked set represents nodes that have been visited. After we add a node to the stack, we visit
its lexicographically next unmarked child. If there is none, we pop the topmost node from the stack and
note it down for postorder. Note that there are two ways DFS could run: with restart or without; DFS with
restart is the version where if we have exhausted our stack, and still have unmarked nodes left, we restart
on the next unmarked node.

Stack (bottom-top) VisitedSet Preorder Postorder
A {A} A -
AB {AB} AB -
ABC {ABC} ABC -
ABCF {ABCF} ABCF -
ABC {ABCF} ABCF F
AB {ABCF} ABCF FC
A {ABCF} ABCF FCB
AD {ABCFD} ABCFD FCB
ADE {ABCFDE} ABCFDE FCB
AD {ABCFDE} ABCFDE FCBE
A {ABCFDE} ABCFDE FCBED
- {ABCFDE} ABCFDE FCBEDA

If DFS restarts on unmarked nodes, the following happens in the last line. Otherwise, we do
not proceed further.

Stack (bottom-top) VisitedSet Preorder Postorder
G {ABCFDEG} ABCFDEG FCBEDAG

For BFS, we use a queue instead of a stack. BFS does not have the notion of in-order and post-order, so
we only visit it when we remove it from the queue.

4 Tree Traversals, Graphs, and Shortest Paths

2 The Shortest Path to your Heart
For the graph below, let g(u, v) be the weight of the edge between any nodes u and v. Let h(u, v) be the
value returned by the heuristic for any nodes u and v.

1

5

15

1

2

4

1

A

B

C

D

E

F

Below, the pseudocode for Dijkstra’s and A∗ are both shown for your reference throughout the problem.

Dijkstra’s Pseudocode
PQ = new PriorityQueue()
PQ.add(A, 0)
PQ.add(v, infinity) # (all nodes except A).

distTo = {} # map
edgeTo = {} # map
distTo[A] = 0
distTo[v] = infinity # (all nodes except A).

while (not PQ.isEmpty()):
 poppedNode, poppedPriority = PQ.pop()

 for child in poppedNode.children:
 potentialDist = distTo[poppedNode] +
 edgeWeight(poppedNode, child)

 if potentialDist < distTo[child]:
 distTo.put(child, potentialDist)
 PQ.changePriority(child,potentialDist)
 edgeTo[child] = poppedNode

A∗ Pseudocode
PQ = new PriorityQueue()
PQ.add(A, h(A, goal))
PQ.add(v, infinity) # (all nodes except A).

distTo = {} # map
distTo[A] = 0
distTo[v] = infinity # (all nodes except A).

while (not PQ.isEmpty()):
 poppedNode, poppedPriority = PQ.pop()
 if (poppedNode == goal): terminate

 for child in poppedNode.children:
 potentialDist = distTo[poppedNode] +
 edgeWeight(poppedNode, child)

 if potentialDist < distTo[child]:
 distTo.put(child, potentialDist)
 PQ.changePriority(child, potentialDist
 + h(child, goal))
 edgeTo[child] = poppedNode

(a) Run Dijkstra’s algorithm to find the shortest paths from 𝐴 to every other vertex. You may find it helpful
to keep track of the priority queue. We have provided a table to keep track of best distances, and the
adjacent vertex that has an edge going to the target vertex in the current shortest paths tree so far.

𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

distTo

edgeTo

Tree Traversals, Graphs, and Shortest Paths 5

Solution:

B = 1 ; D = 5 ; F = 9 ; E = 10 ; C = 12

Explanation: For the best explanation, it is recommended to check the slideshow linked on the website
or watch the walkthrough video, as the text explanation is verbose.

We will maintain a priority queue and a table of distances found so far, as suggested in the problem and
pseudocode. We will use {} to represent the PQ, and (()) to represent the distTo array.

{A:0, B:inf, C:inf, D:inf, E:inf, F:inf}. (()).

Pop A.

{B:inf, C:inf, D:inf, E:inf, F:inf}. ((A: 0)).

changePriority(B, 1). changePriority(D, 5).

{B:1, D:5, C:inf, E:inf, F:inf}. ((A: 0)).

Pop B.

{D:5, C:inf, E:inf, F:inf}. ((A: 0, B: 1)).

changePriority(C, 16).

{D:5, C:16, E:inf, F:inf}. ((A: 0, B: 1)).

Pop D.

{C:16, E:inf, F:inf}. ((A: 0, B: 1, D: 5)).

changePriority(F, 9).

{F: 9, C:16, E:inf, F:inf}. ((A: 0, B: 1, D: 5)).

Pop F.

{C:16, E:inf}. ((A: 0, B: 1, D: 5, F: 9)).

changePriority(E, 10).

{E:10, C:16}. ((A: 0, B: 1, D: 5, F: 9)).

Pop E.

{C:16}. ((A: 0, B: 1, D: 5, F: 9, E: 10)).

changePriority(C, 12).

{C:12}. ((A: 0, B: 1, D: 5, F: 9, E: 10)).

Pop C.

{}. ((A: 0, B: 1, D: 5, F: 9, E: 10, C: 12)).

At the end, our table looks like this:

𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

distTo 0 1 12 5 10 9

edgeTo - A E A F D

(b) Given the weights and heuristic values for the graph above, what path would A∗ search return, starting
from 𝐴 and with 𝐹 as a goal?

6 Tree Traversals, Graphs, and Shortest Paths

Edge Weights Heuristics

𝑔(𝐴,𝐵) = 1
𝑔(𝐴,𝐷) = 5
𝑔(𝐵,𝐶) = 15
𝑔(𝐶,𝐷) = 1
𝑔(𝐷, 𝐹) = 4
𝑔(𝐹 ,𝐸) = 1
𝑔(𝐸,𝐶) = 2

ℎ(𝐴, 𝐹) = 8
ℎ(𝐵, 𝐹) = 16
ℎ(𝐶, 𝐹) = 4
ℎ(𝐷, 𝐹) = 4
ℎ(𝐸, 𝐹) = 5

𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

distTo

edgeTo

Solution: A∗ would return A-D-F . The cost here is 9.

𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

distTo 0 1 ∞ 5 ∞ 9

edgeTo - A - A - D

Explanation: A∗ runs in a very similar fashion to Dijkstra’s. We got the same answer for the shortest
path to F, though we actually explored less unnecessary nodes in the process (we never popped B, C, or E
off the queue). The main difference is the priority in the priority queue. For A∗, whenever computing the
priority (for the purposes of the priority queue) of a particular node n, always add h(n) to whatever you
would use with Dijkstra’s.

Additionally, note that A∗ will be run to find the shortest path to a particular goal node (as our heuristic is
calculated as our estimate to our specific goal node), whereas Dijkstra’s may be run with a specific goal, or
it may be run to find the shortest paths to ALL nodes. In the solutions above, we found the shortest paths
to all nodes, but if we only needed to know the shortest path to E, for example, we could have stopped
after visiting E.

(c) Based on the heuristics for part b, is the A∗ heuristic for this graph good? In other words, will it always
give us the actual shortest path from A to F? If it is good, give an example of a change you would make
to the heuristic so that it is no longer good. If it is not, correct it.

Solution: The heuristic is admissible: for every node, the heuristic value is less than or equal to the shortest
distance path from that node to the target node. It is also consistent: each estimate is less than or equal
to the estimated distance from any neighboring vertex to the goal, plus the cost of reaching that neighbor.
Because it is both admissible and consistent, we can say that the heuristic is good. If we changed the
heuristic from D to F to be 6 (i.e. h(D, F) = 6), then the overall heuristic for the graph would no longer
be admissible.

Tree Traversals, Graphs, and Shortest Paths 7

3 Extra: Graph Conceptuals
(a) Answer the following questions as either True or False and provide a brief explanation:

1. If a graph with 𝑛 vertices has 𝑛 − 1 edges, it must be a tree.
Solution: False. The graph must be connected.

2. Every edge is looked at exactly twice in each full run of DFS on a connected, undirected graph.
Solution: True. Say an edge connects 𝑢 and 𝑣. Both 𝑢 and 𝑣 will look at the other one through this edge
when it’s their turn.

3. In BFS, let 𝑑(𝑣) be the minimum number of edges between a vertex 𝑣 and the start vertex. For any
two vertices 𝑢, 𝑣 in the fringe (recall that the fringe in BFS is a queue), |𝑑(𝑢) − 𝑑(𝑣)| is always less
than 2.
Solution: True. Suppose this was not the case. Then, we could have a vertex 2 edges away and a vertex
4 edges away in the fringe at the same time. But, the only way to have a vertex 4 edges away is if a vertex
3 edges away was removed from the fringe. We see this could never occur because the vertex 2 edges away
would be removed before the vertex 3 edges away!

(b) Given an undirected graph, provide an algorithm that returns true if a cycle exists in the graph, and false
otherwise. Also, provide a Θ bound for the worst case runtime of your algorithm.

Solution: We do a depth first search traversal through the graph. While we recurse, if we visit a node that
we visited already, then we’ve found a cycle. Assuming integer labels, we can use something like a visited
boolean array to keep track of the elements that we’ve seen, and while looking through a node’s neighbors,
if visited gives true, then that indicates a cycle.

However, since the graph is undirected, if an edge connects vertices u and v, then u is a neighbor of v, and
v is a neighbor of u. As such, if we visit v after u, our algorithm will claim that there is a cycle since u
is a visited neighbor of v. To address this case, when we visit the neighbors of v, we should ignore u. To
implement this in code, we could add the parent as another parameter in the method call. In the worst
case, we have to explore at most 𝑉 edges before finding a cycle (number of edges doesn’t matter). So, this
runs in Θ(𝑉).

Pseudocode is provided below (for a disconnected graph, we should call find_cycle on each component).
find_cycle(v, parent=-1):
 visited[v] = true
 for (v, w) in G:
 if !visited[w]:
 if find_cycle(w, v):
 return True
 else if w != parent:
 return True
 return False

	Trees, Graphs, and Traversals
	The Shortest Path to your Heart
	Extra: Graph Conceptuals

