
CS 61B Asymptotics II and BSTs
Fall 2025 Discussion 06: October 06, 2025

1 Re-cursed with Asymptotics
To help visualize the solutions better, a video walkthrough of this problem is linked here!

(a) What is the runtime of the code below in terms of n?
public static int curse(int n) {
 if (n <= 0) {
 return 0;
 } else {
 return n + curse(n - 1);
 }
}

Θ(𝑛). On each recursive call, we do a constant amount of work. We make 𝑛 recursive calls, because we go
from 𝑛 to 1. Then 𝑛 recursive layers with 1 work at each layer is overall Θ(𝑛) work.

(b) Can you find a runtime bound for the code below? We can assume the System.arraycopy
method takes Θ(𝑁) time, where 𝑁 is the number of elements copied. The official signature is
System.arrayCopy(Object sourceArr, int srcPos, Object dest, int destPos, int length).
Here, srcPos and destPos are the starting points in the source and destination arrays to start copying
and pasting in, respectively, and length is the number of elements copied.
public static void silly(int[] arr) {
 if (arr.length <= 1) {
 System.out.println("You won!");
 return;
 }

 int newLen = arr.length / 2;
 int[] firstHalf = new int[newLen];
 int[] secondHalf = new int[newLen];

 System.arraycopy(arr, 0, firstHalf, 0, newLen);
 System.arraycopy(arr, newLen, secondHalf, 0, newLen);

 silly(firstHalf);
 silly(secondHalf);
}

https://www.youtube.com/watch?v=iedH3lkY-mQ&list=PLnp31xXvnfRpBCAx-EGDwnOY4YW0zwczO&index=5

2 Asymptotics II and BSTs

Solution: Θ(𝑁 log(𝑁))
At each level, we do 𝑁 work, because the call to System.arraycopy. You can see that at the top level,
this is 𝑁 work. At the next level, we make two calls that each operate on arrays of length N/2, but that
total work sums up to 𝑁 . On the level after that, in four separate recursive function frames we’ll call
System.arraycopy on arrays of length N/4, which again sums up to 𝑁 for that whole layer of recursive calls.

Now we look for the height of our recursive tree. Each time, we halve the length of N, which means that
the length of the array 𝑁 on recursive level 𝑘 is roughly 𝑁 ∗ (12)

𝑘. Then we will finally reach our base
case 𝑁 ≤ 1 when we have 𝑁 ∗ (12)

𝑘 = 1. Doing some math, we see this can be transformed into 𝑁 = 2𝑘,
which means 𝑘 = log2(𝑁). In other words, the number of layers in our recursive tree is log2(𝑁). If we have
log2(𝑁) layers with Θ(𝑁) work on each layer, we must have Θ(𝑁 log(𝑁)) runtime.

(c) Given that exponentialWork runs in Θ(3𝑁) time with respect to input 𝑁 , what is the runtime of amy?
public void ronnie(int N) {
 if (N <= 1) {
 return;
 }
 amy(N - 2);
 amy(N - 2);
 amy(N - 2);
 exponentialWork(N); // Runs in $Theta(3^N)$ time
}

Θ(3𝑁). Drawing out the recursive tree, the first level has Θ(3𝑁) work, the next level has Θ(3𝑁−1) work, and
so on until the last level which has approximately Θ(3𝑁2) work. This gives the sum Θ(3𝑁) + Θ(3𝑁−1) +
…+Θ(3𝑁2) = Θ(3𝑁).

Asymptotics II and BSTs 3

2 BST Asymptotics
Below we define the find method of a BST (Binary Search Tree) as in lecture, which returns the BST rooted
at the node with key sk in our overall BST. In this setup, assume a BST has a key (the value of the tree root)
and then pointers to two other child BSTs, left and right.
public static BST find(BST tree, Key sk) {
 if (tree == null) {
 return null;
 }
 if (sk.compareTo(tree.key) == 0) {
 return tree;
 } else if (sk.compareTo(tree.key) < 0) {
 return find(tree.left, sk);
 } else {
 return find(tree.right, sk);
 }
}

(a) Assume our BST is perfectly bushy. What is the runtime of a single find operation in terms of N, the
number of nodes in the tree? Can we generalize the runtime of find to a theta bound?

Find operations on a perfectly bushy BST take 𝑂(log(𝑁)) time, as the height of a perfectly bushy BST is
log(𝑁). In the worst case scenario, the key we’re looking at is all the way at a leaf, so we have to traverse
a path from root to leaf of length log(𝑁).

We cannot generalize the runtime of find to a theta bound because the lower and upper bounds are
different. It is lower-bounded by Ω(1) (the case where the key we are looking for is at the root of the BST
provided) and upper-bounded by 𝑂(log(𝑁)) (mentioned above as the path from root to leaf). Therefore,
there is no theta bound for find.

(b) Say we have an empty BST and want to insert the keys [6, 2, 5, 9, 0, -3] (in some order). In what
order should we insert the keys into the BST such that the runtime of a single find operation after all
keys are inserted is 𝑂(𝑁)? Draw out the resulting BST.

4 Asymptotics II and BSTs

We should insert the keys in ascending sorted order: [-3, 0, 2, 5, 6, 9]. This results in a perfectly
linear BST, which means that the longest path for find (from root to leaf) traverses every single node in
the BST. The resulting BST looks like a direct chain of nodes:

−3

0

2

5

6

9

Alternatively, we could insert the keys in descending sorted order, which also results in a perfectly linear
BST (but the keys would chain left from 9 → 6 → 5 → 2 → 0 → −3).

Asymptotics II and BSTs 5

3 ADT Matchmaking!
Match each task to the best Abstract Data Type for the job and justify your answer (ie. explain why other
options would be less ideal). The options are List, Map, Queue, Set, and Stack. Each ADT will be
used once.

1. You want to keep track of all the unique users who have logged on to your system.

You should use a set because we only want to keep track of unique users (i.e. if a user logs on twice, they
shouldn’t show up in our data structure twice). Additionally, our task doesn’t seem to require that the
structure is ordered.

2. You are creating a version control system and want to associate each file name with a Blob.

You should use a map. Maps naturally let you pair a key and value, and here we could have the file name
be the key, and the blob be the value.

3. We are grading a pile of exams and want to grade starting from the top of the pile (Hint: what order do we
pile papers in?).

We should use a Stack. When papers are added to a pile, the top of the pile is the last paper added. Since
we want to grade the top of the pile first, it makes sense for us to use a last-in-first-out (LIFO) approach
in which we continually pop papers off the top of our Stack as we grade them.

4. We are running a server and want to service clients in the order they arrive.

We should use a Queue. We can push clients to the front of the Queue as they arrive, and pop them off
the Queue as we service them.

5. We have a lot of books at our library and we want our website to display them in some sorted order. We
have multiple copies of some books and we want each listing to be separate.

We should use a List because a List is an ordered collection of items. Additionally, we need to allow for
duplicate items because we have multiple copies of some books.

	Re-cursed with Asymptotics
	BST Asymptotics
	ADT Matchmaking!

