CS 61B Asymptotics and Disjoint Sets
Fau 2025 Discussion 05: September 29, 2025

| XStep

Parts of this problem were inspired by course material for Princeton's introductory data structures and algorithms course, COS226.

Analyze the following loops and determine the asymptotic runtime of each using big Theta notation with
respect to N. Assume that System.out.println(...) runs in constant time.

for (int x = 7; x < N + 14; x++) { for (int x = 1; x < N; x++) {
System.out.println("tidal wave"); for (int y = 1; y < N; y++) {
} System.out.println("amethyst");
}
}
Runtime: @(N) Runtime: @(N2)
for (int x = 1; x < N; x *= 2) { for (int x = 2; x < N; x += 2) {
for (int y = 1; y < N; y++) { for (int y = 1; y < 1000000; y) {
System.out.println("flamewall"); System.out.println("anathema");
} }
} }
Runtime: @(N log N) Runtime: @(N)
for (int x = 3; x < N * N * N; x *= 3) { for (int x = 6; x < N; x += 6) {
System.out.println("nullscapes"); for (int y = x; y < N; y += 6) {
¥ System.out.println("grief");
}
}

Runtime: @(log N3) Runtime: @(N?2)

2 Asymptotics and Disjoint Sets

2 Disjoint Sets

In lecture, we discussed the Disjoint Sets ADT. Some authors call this the Union Find ADT. Today, we will
use union find terminology so that you have seen both.

(a) Assume we have nine items, represented by integers 0 through 8. All items are initially unconnected
to each other. Draw the union find tree, draw its array representation after the series of connect ()
and £ind() operations, and write down the result of £ind() operations using WeightedQuickUnion
without path compression. Break ties by choosing the smaller integer to be the root.

Note: £ind (x) returns the root of the tree for item x.

connect (2, 3);
connect (1, 2);
connect (5, 7);
connect (8, 4);
connect (7, 2);
find(3);

connect (0, 6);
connect (6, 4);
connect (6, 3);
find(8);

find(6) ;

Solution: find () returns 2, 2, 2 respectively.
The array is [2, 2, -9, 2, 0, 2, 0, 5, 4].

A walkthrough of how we arrive at this result can be found on the website, linked here.

https://docs.google.com/presentation/d/1sahjWafzaU4SdIFeCUEHMTIIzc9epZ4nD6VpfzxW6ZU/edit#slide=id.g15cdd662168_0_120

Asymptotics and Disjoint Sets 3

Below is an implementation of the find function for a Disjoint Set. Given an integer val, find(val) returns
the root value of the set val is in. The helper method parent (int val) returns the direct parent of val in
the Disjoint Set representation. Assume that this implementation only uses QuickUnion.

public int find(int val) {
int p = parent(val);
if (p == -1) {
return val;
} else {
int root = find(p);
return root;

(b) If N is the number of nodes in the set, what is the runtime of find in the worst case? Draw out the
structure of the Disjoint Set representation for this worst case.

O(N)

The worst case would occur if we have to traverse up N — 1 nodes to find the root set representative as
shown below for £ind(0). Suppose we started out with elements 0, 1, 2, and 3. Consider the following
Disjoint Set:

[\

3
—1

index |01

[\
w

parent | 1

The worst case runtime of find is ©(V), for £ind(0). Since this implementation does not use WeightQuick-
Union, this could potentially arise if we unioned 0 to 1, setting 1 as the root, then unioning 1 to 2, setting
2 as the root, and finally unioning 2 to 3, setting 3 as the root (try drawing this out for yourself!). WQU
solves this “spindly set” problem by ensuring that the smaller set is merged into the larger one, so when

we try unioning 1 to 2, 1 must be the root and not the 2.

Note that this function also does not implement path compression, making the disjoint set more susceptible

to worst cases like this.

(¢) Using a function setParent(int val, int newParent), which updates the value of val’s parent to
newParent, modify £ind to achieve a faster runtime using path compression. You may add at most one
line to the provided implementation.

4 Asymptotics and Disjoint Sets

Solution:

public int find(int val) {
int p = parent(val);

if (p == -1) {
return val;
} else {

int root = find(p);
setParent(val, root); // sets the val's parent to be the root of the set.
return root;

}

Although our worst case would still be ©(N) runtime as in the call to £ind(0) above. However, after
one call to £ind(0), the structure of the disjoint set would change so subsequent calls to £ind would be
completed in amortized O(log*(N)).

Here’s the structure of the set after one call to £ind (0):

index |O]1]2]3
parent [33]3| —1

(d) Extra Practice: Draw out the tree and array representation for the following WeightedQuickUnion with
path compression that has 9 elements from 0 to 8. Break ties by choosing the smaller integer to be root.

connect (2, 3);
connect (1, 2);
connect (5, 7);
connect (8, 4);
connect (7, 2);
find(3);

connect (0, 6);
connect (7, 4);
connect (6, 3);
find(8);

find (6) ;

2,2,-9,2,2, 2 2 2,2

Asymptotics and Disjoint Sets 5

3 Algorithm Analysis

(a)

Say we have a function findMax that iterates through an unsorted int array one time and returns the
maximum element found in that array. Give the tightest lower and upper bounds (2(-) and O(:)) of
findMax in terms of N, the length of the array. Is it possible to define a ©(-) bound for findMax?

Because the array is unsorted, we don’t know where the max will be, so we have to iterate through the
entire array to ensure that we find the true max. Therefore, we know that we can never go faster than
linear time with respect to the length of the array. Since the function is both lower and upper bounded by

N, we can say that the function is theta-bounded by N as well (B(N)).

Give the worst case and best case runtime in terms of M and N. Assume ping runs in ©(1) and returns
an int.
for (int i = N; i > 0; i--) {
for (int j = 0; j <= M; j++) {
if (ping(i, j) > 64) { break; }
}

Worst case runtime: [\ Best case runtime: [V

We repeat the outer loop N times, no matter what. For the inner loop, the amount of times we repeat
it depends on the result of ping. In the best case, it returns true immediately, such that we’ll only ever
look at the inner loop once and then break the inner loop. In the worst case, ping is always false and we

complete the inner loop M times for every value of N in the outer loop.

Below we have a function that returns true if every int has a duplicate in the array, and false if there
is any unique int in the array. Assume sort (array) is in ©(N log N) and returns array sorted.

public static boolean noUniques(int[] array) {
array = sort(array);
int N = array.length;
for (int i = 0; i < N; i +=1) {
boolean hasDuplicate = false;
for (int j =0; j < N; j += 1) {
if (i '= j && array[i] == array[jl) {
hasDuplicate = true;
}
}
if ('hasDuplicate) return false;
}
return true;

3

Give the worst case and best case runtime where N = array.length.

Worst case runtime: /N Best case runtime: /N

Asymptotics and Disjoint Sets

Notice that we call sort at the beginning of the function, which we are told runs in ©(N log N).

First, we consider the best case. We notice that if hasDuplicate is false after the inner loop (i.e. !
hasDuplicate has truth value true) we can exit the for loop early via the return statement on line
11. Thus, the best case is when we never set hasDuplicate to be true during the first time we run the

inner loop. In this case, we can return after only looping through the array once, giving us ©(N log N +
N)=0O(NlogN).

For the worst case, we notice that if hasDuplicate is always set to true by the inner loop, we never return
on line 11. Thus, we consider the worst case where hasDuplicate is always set to true in every loop,
forcing us to have to loop fully through both the inner and outer loop. One such input is an array of all

the same integer! Since we have to fully loop through both loops, our worst-case runtime is ©(N log N +
N?) =0O(N?).

	xStep
	Disjoint Sets
	Algorithm Analysis

