CS 61B Comparators, Iterators, and [terables
Faﬂ 2025 Discussion 04: September 22, 2025

| Inheritance Syntax

Suppose we have the classes below:

public class ComparatorTester {
public static void main(String[] args) {
String[] strings = new String[] {"horse", "cat", "dogs"};
System.out.println(Maximizer .max(strings, new LengthComparator()));

}

public class LengthComparator implements Comparator<String> {
@0verride
public int compare(String a, String b) {
return a.length() - b.length(Q);

b
}
public class Maximizer {
/**
* Returns the maximum element in items, according to the given Comparator.
*/

// public static <T> T max(T[] items, Comparator<T> c) {
public static <String> String max(String[] items, Comparator<String> c) {

int cmp = c.compare(items[i], items[maxDex]);

(a) Suppose we omit the compare method from LengthComparator. Which of the following will fail to
compile?

O ComparatorTester. java
O LengthComparator. java
O Maximizer. java

O Comparator. java

(b) Suppose we omit implements Comparator<String> in LengthComparator. Which file will fail to compile?

I:l ComparatorTester. java
I:l LengthComparator. java
I:I Maximizer. java

I:l Comparator. java

2 Comparators, Iterators, and Iterables

(c) Suppose we removed @0verride. What are the implications?

Comparators, Iterators, and Iterables 3

2 OHQueue

Meshan is designing the new 61B Office Hours Queue. The code below for OHRequest represents a single
request. It has a reference to the next request. description and name contain the description of the bug and
name of the person on the queue, and isSetup marks the ticket as being a setup issue or not.

public class OHRequest {
public String description;
public String name;
public boolean isSetup;
public OHRequest next;

public OHRequest(String description, String name, boolean isSetup, OHRequest next) {
this.description = description;
this.name = name;
this.isSetup = isSetup;
this.next = next;

4 Comparators, Iterators, and Iterables

(a) Create a class OHIterator that implements an Iterator over O0HRequests and only returns requests with
good descriptions (using the isGood function). Our OHIterator’s constructor takes in an OHRequest that
represents the first O0HRequest on the queue. If we run out of office hour requests, we should throw a
NoSuchElementException when our iterator tries to get another request, like so:

throw new NoSuchElementException();

public class OHIterator ___________________ o {
private OHRequest curr;

public OHIterator (OHRequest request) {

5. }public static boolean isGood(String description) { return description.length() >=

@0verride

___ {
While (o o) {
}

}

@0verride

___ {
if (o ____) {

TR OW ;

}

}

(b) Define a class 0HQueue below: we want our 0HQueue to be Iterable so that we can process OHRequest
objects with good descriptions. Our constructor takes in the first 0HRequest object on the queue.

Comparators, Iterators, and Iterables 5

public class OHQuewe __________________________ ___ oo _____ {
private OHRequest request;
public OHQueue (OHRequest request) {

(c) Suppose we notice a bug in our office hours system: if a ticket’s description contains the words “thank u”, it
is put on the queue twice. To combat this, we’d like to adjust our implementation of OHIterator’s next ().

If the current item’s description contains the words “thank u”, it should skip the next item on the queue,
because we know the next item is an accidental duplicate from our buggy system. As an example, if there
were 4 OHRequest objects on the queue with descriptions ["thank u", "thank u", "im bored", "help
me"], calls to next () should return the Oth, 2nd, and 3rd OHRequest objects on the queue.

To check if a String s contains the substring “thank u”, you can use: s.contains("thank u")

@0verride

6 Comparators, Iterators, and Iterables

(d) Now assume the 0HQueue uses the modified OHIterator as its iterator. Fill in the blanks to print only
the names of tickets from the queue beginning at s1 with good descriptions, skipping over duplicate
descriptions that contain “thank u”. What would be printed after we run the main method?

public static void main(String[] args) {

nullSJI:IRequest s5 = new OHRequest("I deleted all of my files, thank u", "Elana", true,

OHRequest s4 = new OHRequest("conceptual: what is Java", "Mihir", false, s5);
OHRequest s3 = new OHRequest("git: I never did lab 1", "Kevin", true, s4);
OHRequest s2 = new OHRequest("help", "Ethan", false, s3);

S2).OHReques'c sl = new OHRequest("no I haven't tried the debugger", "Ashley", false,

	Inheritance Syntax
	OHQueue

