
CS 61B Comparators, Iterators, and Iterables
Fall 2025 Discussion 04: September 22, 2025

1 Inheritance Syntax
Suppose we have the classes below:
public class ComparatorTester {
 public static void main(String[] args) {
 String[] strings = new String[] {"horse", "cat", "dogs"};
 System.out.println(Maximizer.max(strings, new LengthComparator()));
 }
}

public class LengthComparator implements Comparator<String> {
 @Override
 public int compare(String a, String b) {
 return a.length() - b.length();
 }
}

public class Maximizer {
 /**
 * Returns the maximum element in items, according to the given Comparator.
 */
 // public static <T> T max(T[] items, Comparator<T> c) {
 public static <String> String max(String[] items, Comparator<String> c) {
 ...
 int cmp = c.compare(items[i], items[maxDex]);
 ...
 }
}

(a) Suppose we omit the compare method from LengthComparator. Which of the following will fail to
compile?

ComparatorTester.java

LengthComparator.java

Maximizer.java

Comparator.java

LengthComparator, because it is claiming to be a Comparator, but it is missing a compare method.

(b) Suppose we omit implements Comparator<String> in LengthComparator. Which file will fail to compile?

ComparatorTester.java

LengthComparator.java

Maximizer.java

2 Comparators, Iterators, and Iterables

Comparator.java

ComparatorTester, because we are trying to provide a LengthComparator (which isn’t a Comparator) to
the method max, which expects a Comparator.

LengthComparator, because compare is no longer overriding anything, thus causing the @Override to
trigger a compiler error.

(c) Suppose we removed @Override. What are the implications?

The code will work fine, but it’s best practice to say “Override” to prevent typos and make our code
more clear.

Comparators, Iterators, and Iterables 3

2 OHQueue
Meshan is designing the new 61B Office Hours Queue. The code below for OHRequest represents a single
request. It has a reference to the next request. description and name contain the description of the bug and
name of the person on the queue, and isSetup marks the ticket as being a setup issue or not.
public class OHRequest {
 public String description;
 public String name;
 public boolean isSetup;
 public OHRequest next;

 public OHRequest(String description, String name, boolean isSetup, OHRequest next) {
 this.description = description;
 this.name = name;
 this.isSetup = isSetup;
 this.next = next;
 }
}

4 Comparators, Iterators, and Iterables

(a) Create a class OHIterator that implements an Iterator over OHRequests and only returns requests with
good descriptions (using the isGood function). Our OHIterator’s constructor takes in an OHRequest that
represents the first OHRequest on the queue. If we run out of office hour requests, we should throw a
NoSuchElementException when our iterator tries to get another request, like so:
 throw new NoSuchElementException();

public class OHIterator __ {
 private OHRequest curr;

 public OHIterator(OHRequest request) {

 __;

 }

 public static boolean isGood(String description) { return description.length() >=5; }

 @Override
 __________________ __________________ _______________________________ {

 while (__) {

 ____________________________________;

 }

 ____________________________________;

 }

 @Override
 __________________ __________________ _______________________________ {

 if (____________________________________) {

 throw __________ ___;

 }

 ____________________________________;

 ____________________________________;

 ____________________________________;

 }
}

Comparators, Iterators, and Iterables 5

Solution:
public class OHIterator implements Iterator<OHRequest> {
 private OHRequest curr;

 public OHIterator(OHRequest request) {
 curr = request;
 }

 public static boolean isGood(String description) { return description.length() >=5; }

 @Override
 public boolean hasNext() {
 while (curr != null && !isGood(curr.description)) {
 curr = curr.next;
 }
 return curr != null;
 }

 @Override
 public OHRequest next() {
 if (!hasNext()) {
 throw new NoSuchElementException();
 }
 OHRequest temp = curr;
 curr = curr.next;
 return temp;
 }
}

Explanation: The OHRequest object queue passed into OHIterator’s constructor represents the first
OHRequest on the queue. Initializing curr to queue in the constructor allows our OHIterator to start at this
first request. Since OHIterator implements an Iterator over OHRequests, we must provide implementations
for the interface methods hasNext() and next(). The hasNext() method handles checking whether there
are more OHRequests. However, we only want requests with good (as defined by isGood) descriptions, so
we must check the descriptions of each OHRequest and skip over the ones with bad descriptions before
determining whether there are OHRequests left.

(b) Define a class OHQueue below: we want our OHQueue to be Iterable so that we can process OHRequest
objects with good descriptions. Our constructor takes in the first OHRequest object on the queue.

6 Comparators, Iterators, and Iterables

public class OHQueue ___ {
 private OHRequest request;
 public OHQueue(OHRequest request) {

 __;
 }

 @Override
 __________________ __________________ _______________________________ {

 __;
 }
}

Solution:
public class OHQueue implements Iterable<OHRequest> {
 private OHRequest request;

 public OHQueue(OHRequest request) {
 this.request = request;
 }

 @Override
 public Iterator<OHRequest> iterator() {
 return new OHIterator(request);
 }
}

Explanation: If we want our OHQueue to be Iterable, OHQueue has to implement the interface Iterable.
A condition of this is implementing the methods of the interface (which in the case of Iterable, is the
iterator() method). As our OHQueue processes OHRequest objects, iterator() in OHQueue should return
an OHIterator over OHRequest objects.

(c) Suppose we notice a bug in our office hours system: if a ticket’s description contains the words “thank u”, it
is put on the queue twice. To combat this, we’d like to adjust our implementation of OHIterator’s next().

If the current item’s description contains the words “thank u”, it should skip the next item on the queue,
because we know the next item is an accidental duplicate from our buggy system. As an example, if there
were 4 OHRequest objects on the queue with descriptions ["thank u", "thank u", "im bored", "help
me"], calls to next() should return the 0th, 2nd, and 3rd OHRequest objects on the queue.

To check if a String s contains the substring “thank u”, you can use: s.contains("thank u")

Comparators, Iterators, and Iterables 7

@Override
______________ ____________ ______________ {

 if (____________________________________) {

 throw __________ ___;

 }
 ____________________________________;

 ____________________________________;

 if (__) {

 ______________________;
 }
 return ______________________;
}

Solution:
@Override
public OHRequest next() {
 if (!hasNext()) {
 throw new NoSuchElementException();
 }
 OHRequest temp = curr;
 curr = curr.next;
 if (temp.description.contains("thank u")) {
 curr = curr.next;
 }
 return temp;
}

(d) Now assume the OHQueue uses the modified OHIterator as its iterator. Fill in the blanks to print only
the names of tickets from the queue beginning at s1 with good descriptions, skipping over duplicate
descriptions that contain “thank u”. What would be printed after we run the main method?
public static void main(String[] args) {
 OHRequest s5 = new OHRequest("I deleted all of my files, thank u", "Elana", true,null);
 OHRequest s4 = new OHRequest("conceptual: what is Java", "Mihir", false, s5);
 OHRequest s3 = new OHRequest("git: I never did lab 1", "Kevin", true, s4);
 OHRequest s2 = new OHRequest("help", "Ethan", false, s3);
 OHRequest s1 = new OHRequest("no I haven't tried the debugger", "Ashley", false,s2);

 OHQueue q = _______________________________________;

 for (__) {

 __;
 }
}

8 Comparators, Iterators, and Iterables

Solution:
public static void main(String[] args) {
 OHRequest s5 = new OHRequest("I deleted all of my files, thank u", "Elana", true,null);
 OHRequest s4 = new OHRequest("conceptual: what is Java", "Mihir", false, s5);
 OHRequest s3 = new OHRequest("git: I never did lab 1", "Kevin", true, s4);
 OHRequest s2 = new OHRequest("help", "Ethan", false, s3);
 OHRequest s1 = new OHRequest("no I haven't tried the debugger", "Ashley", false,s2);

 OHQueue q = new OHQueue(s1);
 for (OHRequest r: q) {
 System.out.println(r.name);
 }
}

Overall, we print:
Ashley
Kevin
Mihir
Elana

	Inheritance Syntax
	OHQueue

